

The Ordered Median Problem

- 1. Motivation
- 2. Definitions
- 3. Basic Properties

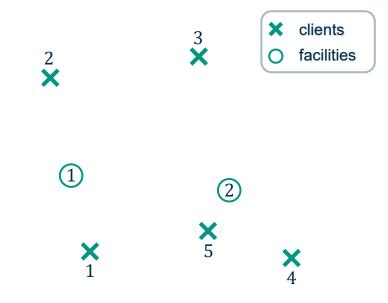
- 1. Motivation
- 2. Definitions
- 3. Basic Properties

Basic facility location problem

• Given n clients, each with a certain demand

Basic facility location problem

- Given n clients, each with a certain demand
- Find the "best" locations to open p new facilities in order to satisfy the demand of all clients



Basic facility location problem

- Given n clients, each with a certain demand
- Find the "best" locations to open p new facilities in order to satisfy the demand of all clients

Three common settings

- Continuos
- On Networks
- Discrete

Basic facility location problem

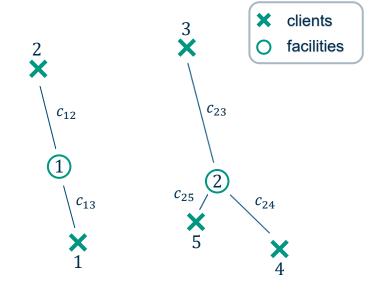
- Given n clients, each with a certain demand
- Find the "best" locations to open p new facilities in order to satisfy the demand of all clients

Three common settings

- Continuos
- On Networks
- Discrete

Various relevant objectives

p-median (min sum of all costs)



Basic facility location problem

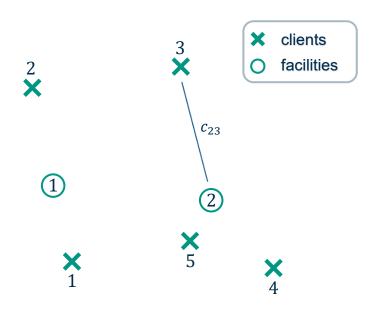
- Given n clients, each with a certain demand
- Find the "best" locations to open p new facilities in order to satisfy the demand of all clients

Three common settings

- Continuos
- On Networks
- Discrete

Various relevant objectives

- p-median (min sum of all costs)
- p-center (min max cost)



Basic facility location problem

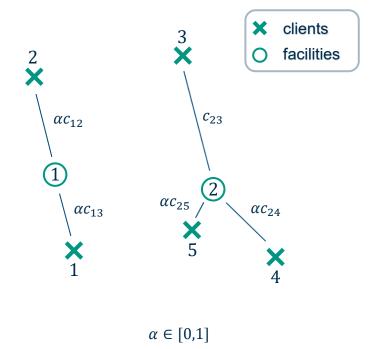
- Given n clients, each with a certain demand
- Find the "best" locations to open p new facilities in order to satisfy the demand of all clients

Three common settings

- Continuos
- On Networks
- Discrete

Various relevant objectives

- p-median (min sum of all costs)
- p-center (min max cost)
- α -cent-dian (convex combination of median and center)



Basic facility location problem

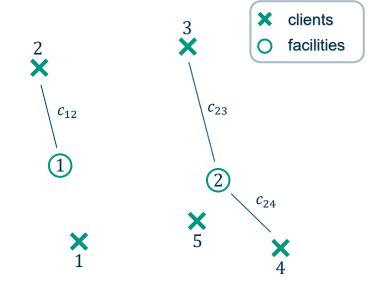
- Given n clients, each with a certain demand
- Find the "best" locations to open p new facilities in order to satisfy the demand of all clients

Three common settings

- Continuos
- On Networks
- Discrete

Various relevant objectives

- p-median (min sum of all costs)
- p-center (min max cost)
- α -cent-dian (convex combination of median and center)
- k-centrum (min k largest costs)



k = 3

- 1. Motivation
- 2. Definitions
- 3. Basic Properties

Definitions

Definition (ordered median function OMf)

For a vector $x \in \mathbb{R}^n$, let $x_{ord} = (x_{(1)}, x_{(2)}, ..., x_{(n)})$ denote the ordered version of x with $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$. Let $\lambda \in \mathbb{R}^n$ be an objective vector. The following function is defined to be an OMf.

$$f_{\lambda} \colon \mathbb{R}^n \to \mathbb{R}, \qquad f_{\lambda}(x) = \langle \lambda, x_{ord} \rangle = \lambda_1 x_{(1)} + \lambda_2 x_{(2)} + \dots + \lambda_n x_{(n)}$$

5

Definitions

Definition (ordered median function OMf)

For a vector $x \in \mathbb{R}^n$, let $x_{ord} = (x_{(1)}, x_{(2)}, ..., x_{(n)})$ denote the ordered version of x with $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$. Let $\lambda \in \mathbb{R}^n$ be an objective vector. The following function is defined to be an OMf.

$$f_{\lambda} \colon \mathbb{R}^n \to \mathbb{R}, \qquad f_{\lambda}(x) = \langle \lambda, x_{ord} \rangle = \lambda_1 x_{(1)} + \lambda_2 x_{(2)} + \dots + \lambda_n x_{(n)}$$

Definition (ordered median problem)

Let $F \subseteq \mathbb{R}^n$ be defined by finitely many polynomial inequalites and let f_{λ} be an ordered median function. The following problem is defined to be an ordered median problem.

$$\min_{x \in F} f_{\lambda}(x)$$

5

Definitions

Definition (ordered median function OMf)

For a vector $x \in \mathbb{R}^n$, let $x_{ord} = (x_{(1)}, x_{(2)}, ..., x_{(n)})$ denote the ordered version of x with $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$. Let $\lambda \in \mathbb{R}^n$ be an objective vector. The following function is defined to be an OMf.

$$f_{\lambda} \colon \mathbb{R}^n \to \mathbb{R}, \qquad f_{\lambda}(x) = \langle \lambda, x_{ord} \rangle = \lambda_1 x_{(1)} + \lambda_2 x_{(2)} + \dots + \lambda_n x_{(n)}$$

Definition (ordered median problem)

Let $F \subseteq \mathbb{R}^n$ be defined by finitely many polynomial inequalites and let f_{λ} be an ordered median function. The following problem is defined to be an ordered median problem.

$$\min_{x \in F} f_{\lambda}(x)$$

Examples

- $\lambda = (1, 1, ..., 1) \rightarrow p$ -median
- $\lambda = (0, ..., 0, 1) \rightarrow p$ -center
- $\lambda = (\alpha, ..., \alpha, 1) \rightarrow \alpha$ -cent-dian
- $\lambda = (0, ..., 0, \underbrace{1, ..., 1}_{k \text{ times}}) \rightarrow k\text{-centrum}$

- 1. Motivation
- 2. Definition
- 3. Basic Properties

Basic Properties of *OMf*s

Let f_{λ} , f_{μ} : $\mathbb{R}^n \to \mathbb{R}$ both be an OMf. Then:

- f_{λ} is non-linear
- f_{λ} is piecewise linear (in part., linear on $K_{\pi} \coloneqq \{x \in \mathbb{R}^n \mid x_{\pi(1)} \le \cdots \le x_{\pi(n)}\}$ for every permutation $\pi \in S_n$)
- f_{λ} is continuous on \mathbb{R}^n
- f_{λ} is symmetric in the sense that for any $x \in \mathbb{R}^n$: $f_{\lambda}(x) = f_{\lambda}(x_{ord})$
- f_{λ} is convex $\Leftrightarrow \lambda_1 \leq \cdots \leq \lambda_n$
- for $c_1, c_2 \in \mathbb{R}$, the function $c_1 f_{\lambda} + c_2 f_{\mu}$ is an OMf
- if $\{f_{\lambda^r}\}_r$ is a sequence of OMfs that pointwise converges to a function f, then f is an OMf
- f_{λ} is a DCH function (difference of two convex positively homogeneous functions)

